Каждый раз глядя в ночное небо я думаю о том, как жаль, что большинство из нас никогда не ступит на поверхность другого небесного тела и не увидит нашу планету из космоса. Согласитесь, хотелось бы хоть раз в жизни взглянуть на Луну и другие планеты чуточку ближе. Но в последний раз нога человека ступала на поверхность Луны в декабре 1972 года, а сегодня мы отправляем в космос не людей, а роботизированные аппараты. Причин такого подхода к освоению космоса много, но имя главной из них – космическая радиация, которая, при длительном нахождении в космосе, представляет серьезную угрозу для здоровья будущих космических путешественников. Недавний эксперимент с микроскопическими грибами Cladosporium sphaerospermumна на борту Международной космической станции предлагает удивительное решение проблемы космического излучения: противорадиционный грибной щит.
Радиация — невидимая угроза
Под космической радиацией ученые понимают электромагнитное излучение внеземного происхождения. При этом значительная часть излучения является более-менее непрерывным потоком плазмы – солнечным ветром, который по сути является продолжением внешних слоев солнечной атмосферы (солнечной короны). Наша планета защищена от космической радиации атмосферой, но в открытом космосе человек оказывается беззащитен. Вот почему радиация – одна из самых больших угроз безопасности астронавтов во время длительных полетов.
К сожалению, полнота наших знаний о влиянии радиации на организм – результат трагедии. Самая крупная катастрофа в истории атомной энергетики произошла 26 апреля 1986 года. В результате взрыва четвертого энергоблока станции была полностью разрушена активная зона атомного реактора, также частично разрушилось здание энергоблока и произошел крупный выброс радиоактивных материалов в окружающую среду. В общей сложности в атмосферу попали 32 килограмма радиоактивного материала и почти 18 килограмм изотопов плутония.
С последствиями взрыва на Чернобыльской АЭС мир борется до сих пор.
После аварии вокруг разрушенной станции была организована запретная зона радиусом 30 километров, которую потом расширили. Широкому обывателю эта территория знакома как «зона отчуждения». Ученые регулярно измеряют уровень радиации домов, одежды, питьевой воды и почвы. Результаты измерений показывают, что особенно заражены в зоне отчуждения рыба и грибы – уровень цезия-137 и стронция-90 сильно превышает норму.
Но как знать, может быть зараженные радиацией грибы – залог успешного космического будущего человечества? По крайней мере результаты исследований, проведенных на борту МКС, показали очень интересные результаты.
Грибы, которые питаются радиацией
Известно, что микроскопические грибы Cladosporium sphaerospermum процветают в условиях высокой радиации благодаря процессу, называемому радиосинтезом. Отмечу, что С. sphaerospermum – это экстремофильный вид, который процветает в районах с высоким уровнем радиации, таких как Чернобыльская АЭС Для C. sphaerospermum радиация не представляет угрозы — это пища.
Этот гриб способен преобразовывать гамма-излучение в химическую энергию с помощью процесса, называемого радиосинтезом. (Думайте об этом процессе как о фотосинтезе, но замените солнечный свет на радиацию). Результаты исследования позволяют предположить, что тонкий слой гриба может служить эффективным щитом от космического излучения для будущих космических путешественников.
С. sphaerospermum осуществляет радиосинтез с помощью меланина — того же пигмента, который придает цвет нашей коже, волосам и глазам — для преобразования рентгеновских и гамма-лучей в химическую энергию. Ученые еще не до конца понимают этот процесс. Но в исследовании отмечается следующее: «считается, что большое количество меланина в клеточных стенках этих грибов опосредует перенос электронов и, таким образом, обеспечивает чистый прирост энергии.
Кроме того, гриб самовоспроизводится, что означает, что астронавты потенциально смогут «вырастить» новую радиационную защиту в дальних космических миссиях, вместо того чтобы полагаться на дорогостоящую и сложную межпланетную цепочку поставок. Тем не менее, исследователи не были уверены, выживет ли C. sphaerospermum на космической станции.
Нильс И. Н. Averesch, соавтор исследования, опубликованного на сервере препринтов bioRxiv, отмечает:
В то время как на земле большинство источников излучения являются гамма — и/или рентгеновскими лучами, излучение в космосе и на Марсе имеет совершенно другой вид и включает высокоэнергетические частицы, в основном протоны. Это излучение еще более разрушительно, чем рентгеновское излучение и гамма-лучи, поэтому даже выживание гриба на МКС не было данностью.
Для проверки «радиорезистентности» C. sphaerospermum в космосе чашки Петри, содержащие тонкий слой гриба, подвергались воздействию космического излучения на борту МКС. Также были выставлены блюда, не содержащие грибка. Результаты показали, что гриб снизил уровень радиации примерно на 2%.
Проанализировав полученные результаты, исследователи подсчитали, что примерно 20-сантиметровый слой C. sphaerospermum «может в значительной степени свести на нет годовой эквивалент дозы радиационной среды на поверхности Марса.» Согласитесь, это было бы значительным преимуществом для астронавтов. В конце концов, астронавт, который уже год находится на Марсе, подвергся бы примерно в 66 раз большему воздействию радиации, чем средний человек на земле.
Однако чтобы быть уверенными в том, что создать такой противорадиоционный щит возможно, необходимы дальнейшие исследования. Вероятно, C. sphaerospermum будет использоваться в сочетании с другими технологиями радиационной защиты на борту космических аппаратов. Но полученные результаты подчеркивают, что относительно простые биотехнологии могут принести огромные выгоды в предстоящих космических полетах.
«Таким образом, C. sphaerospermum и меланин могут оказаться неоценимыми в обеспечении адекватной защиты исследователей в будущих миссиях на Луну, Марс и за его пределами», — пишут авторы исследования. А как вы думаете, удастся ли ученым решить проблему космической гравитации? vkontakte а также в комментариях к этой статье.
Нет комментарий