Квантовая механика странная. Для нас, существ, не способных видеть микромир не вооруженным глазом, представить себе как все устроено на уровне атомов довольно сложно. Между тем, согласно атомной теории, все во Вселенной состоит из мельчайших частиц – атомов, скрепленных друг с другом электрическими и ядерными силами. Физические эксперименты, проведенные в ХХ веке показали, что атомы можно дробить на еще более мелкие, субатомные частицы. В 1911 году британский физик Эрнест Резерфорд провел ряд экспериментов и пришел к выводу, что атом похож на Солнечную систему, только по орбитам вместо планет вокруг него вращаются электроны. Два года спустя, взяв за основу модель Резерфорда, физик Нильс Бор изобрел первую квантовую теорию атома и в этой области теоретической физики все стало еще сложнее. Но если квантовая механика объясняет как взаимодействуют между собой мельчайшие частицы, может ли она объяснить существование пространства-времени?

Может ли квантовая механика объяснить существование пространства-времени?

Ученые ищут ответ на вопрос о том из чего состоит пространство-время уже много лет, но пока безуспешно

Что такое пространство-время?

Уверена, большинство из нас воспринимают пространственно-временной континуум как нечто, само собой разумеющееся. И в этом нет ничего удивительного, ведь не каждый день мы размышляем над чем-то подобным. Но если хорошенько задуматься, то окажется, что ответить на вопрос о том, что представляет собой пространство-время не так уж просто.

Начнем с того, что в соотвествии с теорией относительности (ОТО) Эйнштейна, Вселенная имеет три пространственных измерения и одно временное измерение. При этом все четыре измерения органически связаны в единое целое, являясь почти равноправными и в определенных рамках и условиях способными переходить друг в друга. В свою очередь пространственно-временной континуум или пространство-время – это физическая модель, дополняющая пространство временным измерением.

Может ли квантовая механика объяснить существование пространства-времени?

Пространство-время непрерывно.

В рамках общей теории относительности пространство-время также имеет единую динамическую природу, а его взаимодействие со всеми остальными физическими объектами и есть гравитация.

В рамках ОТО теория гравитации и есть теория пространства-времени, которое не является плоским и способно менять свою кривизну.

Из ОТО также следует, что гравитация является результатом массы, такой как планета или звезда, искажающая геометрию пространства-времени. Космический аппарат NASA Gravity Probe, запущенный в 2004 году, точно измерил, насколько гравитация Земли искривляет пространство-время вокруг нее, в конечном итоге подтвердив расчеты Эйнштейна. Но откуда взялось пространство-время? Ответ, как это ни странно, может скрывать в себе квантовая механика.

Квантовая механика и теория гравитации

Как пишет портал Astronomy.com, сегодня физики стоят на пороге революции, которая может привести к пересмотру всего что мы знаем о пространстве-времени и, возможно, к объяснению того, почему квантовая механика кажется такой странной.

«Пространство-время и гравитация должны в конечном итоге возникнуть из чего-то другого», – пишет физик Брайан Свингл из Университета Мэриленда в статье, опубликованной в журнале Annual Review of Condensed Matter Physics. Иначе трудно понять, как гравитация Эйнштейна и математика квантовой механики могут примирить их давнюю несовместимость.

Может ли квантовая механика объяснить существование пространства-времени?

Квантовая механика противоречит ОТО

Взгляд Эйнштейна на гравитацию как проявление геометрии пространства-времени был чрезвычайно успешным. Но то же самое относится и к квантовой механике, которая с безошибочной точностью описывает махинации материи и энергии на атомном уровне. Однако попытки найти математическое решение, которое совместило бы квантовую странность с геометрической гравитацией, наталкивались на серьезные технические и концептуальные препятствия.

По крайней мере, так было долгое время при попытках понять обычное пространство-время. Возможный ответ пришел из теоретического изучения альтернативных геометрий пространства-времени, мыслимых в принципе, но обладающих необычными свойствами. Одна из таких альтернатив известна как антидеситтеровское пространство, которое имеет тенденцию сжиматься само по себе, а не расширяться, как это делает Вселенная. Для жизни, безусловно, это было бы не самое приятное место. Но как лаборатория для изучения теорий квантовой гравитации, оно может многое предложить и даже стать ключом к квантовым процессам, которые могут быть ответственны за создание пространства-времени.

Что такое антидеситтеровское пространство?

Исследования антидеситтеровское пространства предполагают, например, что математика, описывающая гравитацию (то есть геометрию пространства-времени), может быть эквивалентна математике квантовой физики в пространстве с одним меньшим измерением.

Представьте себе голограмму — плоскую двумерную поверхность, которая включает в себя трехмерное изображение. Подобным же образом, возможно, четырехмерная геометрия пространства-времени может быть закодирована в математике квантовой физики, работающей в трехмерном пространстве. Или, может быть, нужно больше измерений — а вот сколько измерений требуется, являются частью проблемы, которую нужно решить.

Может ли квантовая механика объяснить существование пространства-времени?

Квантовая запутанность – одна из сложнейших для понимания научных теорий

Во всяком случае, исследования в этом направлении открыли удивительную возможность: само пространство-время может быть порождено квантовой физикой, в частности загадочным явлением, известным как квантовая запутанность. Подробно о том, что представляет собой квантовая запутанность я рассказывала в этой статье.

Если попробовать объяснить более-менее простыми словами, то квантовая запутанность это сверхъестественная связь между частицами, разделенными огромными расстояниями. Испускаемые из общего источника, такие частицы остаются запутанными независимо от того, как далеко они друг от друга находятся. Если вы измерите свойство (например, спин) одной частицы, то узнаете, каким будет результат измерения спина другой частицы. Но до измерения эти свойства еще не определены, что противоречит здравому смыслу и подтверждается многими экспериментами. Кажется, что измерение в одном месте определяет, каким будет измерение в другом отдаленном месте.

Энергичные усилия нескольких физиков подарили миру теоретические доказательства того, что сети запутанных квантовых состояний плетут ткань пространства-времени. Эти квантовые состояния часто описываются как «кубиты» — биты квантовой информации. Запутанные кубиты создают сети с геометрией в пространстве с дополнительным измерением, выходящим за пределы числа измерений, в которых находятся кубиты. Таким образом, квантовую физику кубитов можно приравнять к геометрии пространства с дополнительным измерением.

Примечательно, что геометрия, созданная запутанными кубитами, может очень хорошо подчиняться уравнениям из общей теории относительности Эйнштейна, которые описывают движение под действием гравитации — по крайней мере, последние исследования указывают в этом направлении.

Подводя итог отмечу, что никто точно не знает, какие квантовые процессы в реальном мире ответственны за соткание ткани пространства-времени. Возможно, некоторые допущения, сделанные в уже имеющихся расчетах, окажутся ошибочными. Но вполне возможно, что физика стоит на пороге проникновения в основы природы глубже, чем когда-либо. В существование, содержащее ранее неизвестные измерения пространства и времени.

По материалам hi-news